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Abstract. On nanoscale, thermal conduction is affected by system size. The reasons are increased phonon
scattering and changes in phonon group velocity. In this paper, the in-plane thermal resistivity of nanoscale
silicon thin films is analyzed by molecular dynamics (MD) techniques. Modifications to the dispersion
relation are calculated directly with MD methods at high temperature. The results indicate that the
dispersion relation starts to change for very thin films, at around two nanometers. The reasons are band
folding and phonon confinement. Thermal resistivity is analyzed by the direct non-equilibrium method, and
the results are compared to kinetic theory with modified dispersion relations. Thermal resistivity is affected
by both surface scattering and dispersion. Moreover, in thin films, the characteristic vibrational frequency
decreases, which in standard anharmonic scattering models indicates a longer relaxation time and affects
the resistivity. The results indicate that in very thin films, the resistivity becomes highly anisotropic due
to differences in surface scattering. In two cases, surface scattering was found to be the most important
mechanism for increasing thermal resistivity, while in one case, phonon confinement was found to increase
resistivity more than surface scattering.

PACS. 63.22.-m – 31.15.Qg Molecular dynamics and other numerical methods – 65.80.+n Thermal prop-
erties of small particles, nanocrystals, and nanotubes

1 Introduction

Nanoscale features are routinely processed in the electron-
ics industry today. Increasing performance and decreas-
ing feature size have raised the issue of thermal design in
such devices. On this length scale, the size is compara-
ble to the mean free path of heat carriers, and thermal
properties are affected by the system size. On macroscale,
thermal energy transfer is calculated with the phenomeno-
logical Fourier law derived in the early 1800’s [1], which
treats thermal conductivity as a material property. How-
ever, on micro and nanoscales, the Fourier equation breaks
down in the sense that heat flux and thermal gradient
cannot be related with a parameter that depends only on
the material. On these length scales, thermal conductance
also depends on size and microstructure of the system.
These microscale properties increase the scattering rate
of heat carriers, and therefore increase thermal resistance.
Moreover, on nanoscale, the structure affects the phonon
modes and their velocities, which also affect the resistance.
Therefore, micro- and nanoscale thermal conduction has
attracted a lot of interest in the past two decades [2–5].

On small length scales, when the system size is some
mean free paths, thermal conduction can be calculated
with the Boltzmann transport equation (BTE) [3]. The
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solution of BTE falls into three classes: directly solving
the BTE as a partial differential equation [6], using direct
phonon simulation techniques such as Monte Carlo [7–9]
or lattice Boltzmann [10] to obtain the solution, or us-
ing results from radiative heat transfer [11]. In the BTE
approach, the physics of heat transfer, dispersion, and
phonon scattering are incorporated explicitly to the cal-
culations. Thus, for reliable calculation, a good under-
standing of the fundamental phonon processes and relax-
ation times is required. For some phonon processes, such
as point defects, impurities, or boundaries, fairly accu-
rate relaxation time models are available [12]. However,
for some more complicated processes, such as interfaces,
such information is not available [2].

In addition to BTE, the molecular dynamics (MD)
method has become a tool for studying thermal conduc-
tion on the nanoscale [4,5,13]. With MD, the thermal con-
ductivity can be calculated from equilibrium calculations,
from a known heat flux and temperature gradient [13], or
from temperature decay calculations [14]. It is best suited
for studying the effect of structural imperfections (bound-
aries, dislocations, grain boundaries, voids, interstitials,
etc.) on thermal conductivity. It should be emphasized
that even if conductivity on the nanoscale is not a property
of the material, one can calculate a heat flux and a tem-
perature gradient, and call their ratio the conductivity.
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The main limitations of MD are the very limited size and
time scales that can be studied. Typically the maximum
size scale can be a few hundred nanometers (a few mean
free paths), and the time scale only some nanoseconds.
Moreover, the role of electrons can not studied, and an
accurate interaction between atoms may be hard to find.

The applicability of these models is somewhat differ-
ent. Considering the size scale, the phonon models are ap-
plicable only if one can speak about phonons as particles.
Therefore, the size scale should be larger than the phonon
wavelength and the wavepacket size [15]. As MD describes
the motion of the atoms, the lower size limit is of the order
of the lattice constant [10]. Since the displacements of the
atoms form the waves, the interatomic distance is less than
the phonon wavelength [15]. As for the temperature, the
MD simulation is classical, and cannot therefore describe
the low-temperature distribution of phonons. However, at
high temperatures the distributions are equal, and MD is
applicable, when the temperature exceeds the Debye tem-
perature [16]. At room temperature, the typical phonon
wavelength is around 1–2 nm, [4] [p. 182] and the mean
free path in silicon is around 30–200 nm depending on the
phonon mode and frequency [16].

As the molecular dynamics method is a more funda-
mental approach to lattice vibrations than the BTE, the
results of an MD simulation can provide the necessary
data for BTE simulations. Scattering processes and relax-
ation times have been much studied by MD [17–22]. How-
ever, modifications to the dispersion relation due to size
effects have not been studied by MD in thin films. Dis-
persion in nanotubes has been studied. Mingo [23] used
an approximate potential to calculate dispersion in silicon
nanotubes, and used it for analytical conductivity studies.
Shiomi and Maruyama [24] studied thermal conduction in
carbon nanotubes and used the full dispersion curve in
their analysis. It is noted that in the context of continuum
elasticity, many authors have have studied phonon con-
finement and/or its effect on thermal conduction [25–29].
However, in the context of continuum elasticity, the wave-
length must be much larger than the interatomic spacing,
and therefore the analysis is applicable only at very low
temperatures. Moreover, the elastic models used in these
calculations are isotropic, and therefore the calculations
are only approximate for crystalline materials.

The purpose of this paper is to study the finite size
effect on the dispersion relation in nanoscale silicon thin
films by MD simulations. The effect on thermal resistivity
is analyzed by kinetic theory, and the results are com-
pared to non-equilibrium MD results. The interaction be-
tween silicon atoms is described with the modified embed-
ded atom (MEAM) potential. In addition, the dispersion
curves for solid argon are computed to serve as a validity
check for the methods used. In contrast to the continuum
approach, MD simulations for silicon are carried out at
high temperatures, where the typical phonon wavelength
is only a few lattice constants. Moreover, the MD model
is naturally anisotropic.
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Fig. 1. Description of the boundary conditions (BC) used
in the thin film simulations. Free boundaries are applied in
one transverse direction (Tx or Tz), while periodic boundaries
are applied in the other two directions. The longitudinal (L)
phonons are parallel to y.

2 Simulations

The simulations of this paper consist of two parts: disper-
sion relations and thermal resistance. Dispersion relations
are calculated both for bulk silicon systems and thin films.
In addition, the bulk dispersion relation for solid argon is
calculated to serve as a validity check for the methods and
models used. The interaction between argon atoms is de-
scribed with the Lennard-Jones potential, as discussed e.g.
in reference [30]. The silicon system is described with the
potential based on the modified embedded atom method
(MEAM), as developed by Baskes [31].

2.1 Dispersion relation

The dispersion relation can be calculated from the
velocity-velocity autocorrelation function. In this work,
the dispersion relation is calculated as described
by Papanicolau et al. [32] Specifically, the vibrational spec-
trum for a given wavevector, k, is calculated as the Fourier
transform of the autocorrelation function. For a given po-
larization, p = x, y, z, the autocorrelation function is de-
fined as:

Ap(k, t) =
〈νp

k(0)νp
k(t)〉

∑
p 〈νp

k(0)νp
k(0)〉 , (1)

νp
k(t) =

∑

i

vp
i (t)e−ik·ri(t). (2)

Here k is the wavevector of interest, vp
i the p component

of the velocity of atom i, and ri the position of atom i.
As such, νp

k(t) is the reciprocal space representation of the
velocity and Ap(k, t) its autocorrelation. By Fourier trans-
forming Ap(k, t), the eigenfrequencies for a given wavevec-
tor k and the corresponding amplitudes can be found.
Typically sharp peaks are found, and the dispersion re-
lation is determined from the locations of these peaks.

For the bulk dispersion relation periodic boundaries
are used in all directions. The system size in the direction
of the wavevector is 10 nm, in the other directions about
4 nm. Even if the size of the system limits the maximum
phonon wavelength, the bulk dispersion relation was inde-
pendent of system size for this system and also for a sys-
tem of half this size with periodic boundaries. To obtain
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the dispersion relation in different wavevector directions,
different crystal orientations are used. The wavevector is
always aligned along the y-direction, and the crystal ori-
entations used are y[100], x[010], z[001̄]; y[110], x[001],
z[1̄10]; and y[111], x[1̄10], z[112̄]. The system size and the
lattice constant determine the values of k that can be used
in the calculations: the wavelength, λ = 2π/k, cannot ex-
ceed the system size, and it must be at least two nearest
neighbor distances, so that a reasonable wave can be de-
scribed. The system size, as stated above, is around 20
lattice constants, i.e. about 80 nearest neighbor distances
in silicon, in the [100] direction. For comparison, the typ-
ical frequency for a phonon is hν = kBT (Tien et al. [3],
p. 24), which for silicon yields a typical phonon wavelength
of λ = (hv)/(kBT ) = 1 nm at the temperature T = 300 K
(v = 6500 m/s [13]). This is ten times smaller than the sys-
tem size in the direction of k. When thin films are studied,
one of the two directions perpendicular to the wavevector
is described with free boundaries. The film thickness is
varied between a few atomic layers and 4 nm. As an al-
ternative to free boundaries, fixed film boundaries could
also be used. However, in real structures, the thin films are
most likely connected to other films. These boundaries are
not often mechanically stiff [33], and therefore free bound-
aries are used instead of fixed boundaries. The simulation
setup for the thin film systems is shown in Figure 1. For
bulk systems, the boundaries are periodic in all directions.

Initially the system was thermalized to a thermal equi-
librium by applying the Nosé-Hoover thermostat at a
given temperature for 100 000 time steps. For solid argon,
the temperatures 10 K and 82 K were chosen, as motivated
by the experiments of Fuji et al. [34] For silicon, the room
temperature, 300 K, was chosen for practical interest. The
time step 3 fs was chosen as it was the largest time step
that could conserve the total energy in NVE calculations.
After thermalization, the simulations were run for half a
million time steps to obtain the dispersion relation. The
value of νp

k(t) was stored for all k at every fourth time step.
This sampling rate could still capture the highest frequen-
cies present in the system. A higher sampling rate would
require more data storage, but would not reveal any new
vibrational properties. The dispersion relation is of great
importance in nanoscale thermal conduction problems, as
it defines the group velocity of heat carriers.

2.2 Thermal resistivity

Thermal resistance can be calculated with MD using equi-
librium or non-equilibrium techniques [13]. In equilibrium
methods, thermal conduction is calculated from the heat
flux autocorrelation function in a thermal equilibrium. In
one of the non-equilibrium methods, a temperature gradi-
ent and a heat flux are imposed on the system, and ther-
mal resistivity is calculated from their ratio. In principle,
either the heat flux or the temperature gradient is given,
and the other is computed from a stationary state using
MD techniques. Temperature is calculated as a spatio-
temporal average in the stationary state. Usually the sys-
tem is divided into layers, and the temperature of each
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Fig. 2. Dispersion relation of solid argon. The solid lines
are from the MD simulations with the Lennard-Jones poten-
tial. The crosses and dotted line are from the experiments by
Fuji et al. [34]. The black lines represent the longitudinal modes
and the grey lines the transverse modes. The higher frequen-
cies are measured/calculated at 10 K and the lower frequencies
are measured/calculated at 82 K.

layer is calculated by averaging. In this work, a constant
heat flux was used, as proposed by Jund and Jullien [35].
The method has been frequently used, and the author has
also used it previously to compute the thermal conduc-
tivity of bulk silicon, described with the present poten-
tial [36].

In this work, the thermal resistivity was calculated
from simulations running a million time steps. The sta-
tionary state was already reached after no more than
2×105 time steps. Temperature was calculated as a spatio-
temporal average of the kinetic energy of the atoms over
at least 8×105 time steps. For spatial averaging the tem-
perature for each atom layer was calculated separately.

3 Results

3.1 Dispersion relation for bulk systems

The dispersion relations, as calculated from the autocorre-
lation function (Eqs. (1) and (2)) are shown in Figure 2 for
bulk solid argon. For comparison, the experimental data
has been included in the figure. Since experimental data
is available for a low and a high temperature, the disper-
sion relation has been calculated at these temperatures.
This figure shows that the MD method can reproduce the
dispersion relation with good accuracy if the interatomic
potential is chosen correctly. It should be emphasized that
in contrast to the use of the dynamical matrix, MD can
also be used at finite temperatures as it naturally takes
into account the anharmonic effects and thermal expan-
sion [37].

Silicon was described with the modified embedded
atom method (MEAM), as described by Baskes [38]. For
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Fig. 3. Dispersion relation of silicon, as calculated with the
MEAM potential at 300 K. The solid lines are from sim-
ulations, the crosses and the dotted line from the work of
Flensburg and Stewart [40].

the parameterization of the potential, the reader is re-
ferred to the earlier work [31]. The potential was cho-
sen since it has a relatively long range of interaction, and
therefore the energy of free surfaces will be accurately de-
scribed. This is in contrast to the Stillinger-Weber and
Tersoff potentials that are only first neighbor models, and
therefore cannot describe surface relaxations and may be-
come inaccurate near surfaces. In the case of thin films
with free boundaries, the surface properties in particular
are very important. Baskes [39] has used the MEAM po-
tential for silicon surfaces.

The dispersion relation for bulk MEAM silicon is
shown in Figure 3. From the figure it can be seen that the
frequencies of only the long acoustic phonons are repro-
duced with reasonable accuracy. Qualitatively the forms
are similar, but the frequency increases too fast with in-
creasing wavevector. For the optical modes, the frequency
is far too high. This shows that the potential for the near-
est neighbor interaction is too stiff. However, as seen from
the reference data, the group velocity of optical phonons
in silicon is much lower than that of the acoustic phonons.
Therefore, for heat conduction, the acoustic phonons are
much more important than the optical phonons. Moreover,
the anharmonic scattering rate has a strong frequency
dependence, so that most thermal energy is carried by
low frequency phonons. Therefore, for thermal conduction
simulations the inaccuracy of the high frequency phonons
does not necessarily mean inaccurate results.

3.2 Dispersion relation for thin films

To study the effect of the free surfaces on the dispersion
relation, thin silicon films with different crystal orienta-
tions were studied. The crystal orientations and the free
surface directions are shown in Figure 1. As in the case
of the bulk simulations, the wavevector is always aligned
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Fig. 4. Dispersion in thin silicon films with free boundaries in
one direction. In (a) the free boundary is perpendicular to the
x-direction, and in (b) perpendicular to z. The thick, black line
is the bulk relation, and the thin lines are dispersion relations
for films of thicknesses 3, 6, 10, and 14 atomic layers. For the
largest systems, the deviation from the bulk results is minor.
In both figures the transverse vibrations perpendicular to the
free surface are shown in the lowest part.

in the y-direction, and the crystal orientations are y[100],
x[010], z[001̄]; y[110], x[001], z[1̄10]; and y[111], x[1̄10],
z[112̄].

The dispersion curves for MEAM silicon were calcu-
lated in films consisting of 3, 4, 5, 6, 8, 10, 12, and
14 atomic layers. The thickness of the largest systems is
around 25 Å. Some of these results are shown in Figure 4.
The results for intermediate size are similar, and are omit-
ted for the sake of clarity. The results for the largest sys-
tems differ only a little from the bulk results, since the
surface atoms play only a minor role in large systems.

As discussed above, the dispersion relations are ob-
tained from the peaks of the Fourier-transformed velocity-
velocity autocorrelation function, i.e. vibration spectrum.
In bulk systems this procedure gives well defined peaks
for the transverse and longitudinal, optical and acoustic
phonons, as shown in Figures 2 and 3. However, in the case
of thin films, the phonons have multiple discrete modes,
as discussed in the context of continuum models [25,29].
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Fig. 5. Thermal resistivity of silicon thin films as calculated
with the direct non-equilibrium method. The resistivity values
are very high compared to the experimental value due to small
system size. Three different free surfaces are present in the
six simulation cases: (100) triangles, (1̄10) crosses, and (112̄)
circles. The square marks are results from similar calculations
by Li and Xiao [41] with the Stillinger-Weber potential. The
lines are best fits to the data.

In the MD simulations, the vibration spectrum may show
multiple peaks for a given wavevector. In practice, as com-
pared to the bulk simulation, the peaks seem to split into
at most three visible peaks. This can be taken as evidence
of phonon confinement in the MD simulations. From these
peaks, only the most significant one is recorded. Figure 4
shows a discontinuous jump, when the most significant
mode changes. In Figure 4, none of the systems with ten
or more atomic layers contained discontinuous points in
the dispersion relation. Therefore, this kind of discrete
behavior is seen only in very thin films, around 1.5 nm
or less, and only for some crystal orientations. It it possi-
ble that in other cases the finite temperature induces too
much broadening to the vibrational spectra, and confine-
ment is not seen, even if discrete modes were present. As
seen in the figure, when confinement effects are seen, the
group velocity can change significantly. Numerical differ-
entiation of the dispersion curves gives the reduction by a
factor of at most two.

3.3 Thermal resistivity of silicon thin films

Thermal resistivities of the silicon films were also cal-
culated with the direct non-equilibrium MD method, as
discussed above. The simulation was done for the same
systems as the thin film dispersion calculations, and the
crystal orientations were given above. These simulations
result in three cases with a free (100) surface, two cases
with a free (1̄10) surface, and one case with a free (112̄)
surface. The results are shown in Figure 5. For the sake of
comparison, some results from the simulations of Li and
Xiao [41] with the Stillinger-Weber potential are included

in the figure. The free (100) surfaces are indicated by tri-
angles, (1̄10) surfaces by crosses, and the(112̄) surface by
circles.

The results clearly show two different dependencies on
the size. In the case of free (100) and (112̄) surfaces, the
thermal resistivity is heavily dependent on the film thick-
ness, while in the case of (1̄10) surface, the results are not
so heavily dependent on the thickness, and the conductiv-
ity is also much better.

4 Discussion

4.1 Conductivity by kinetic theory

Kinetic theory is a well defined framework to study ther-
mal conduction by phonons. In that context, the ther-
mal conductivity of a phonon system is (e.g. Dames and
Chen [42]):

κ =
1
3

∫

C(ω)vg(ω)Λ(ω)dω. (3)

As the group velocity of optical phonons is very low,
and the frequency high (meaning a high scattering rate),
the optical phonons are often excluded from the analysis.
When the optical modes are excluded, the conductivity
comes from the three acoustic modes, m, and the conduc-
tivity can be written as:

κ =
1
3

∑

m

∫

Cm(ω)vg,m(ω)Λm(ω)dω. (4)

This equation consists of three terms: the heat capacity
of the mode, Cm(ω), the group velocity, vg,m(ω), and the
mean free path Λm(ω). All these depend on the mode and
frequency, and will be discussed below.

For the heat capacity of a mode, consider the energy of
a mode, Em = �ω

∫
n(ω)g(ω)dω. By definition, the heat

capacity is Cm = ∂Em/∂T . As the density of states is not
heavily dependent on the temperature, e.g. in the Debye
and Einstein approximations it is independent [3] (p. 22),
heat capacity becomes Cm(ω) = �ωg(ω)∂n/∂T . In a real,
quantum mechanical solid, the distribution function is the
Bose-Einstein distribution (exp(�ω/kBT ) − 1)−1. How-
ever, as the molecular dynamics calculations are classical,
the distribution function becomes n(ω) = kBT/�ω [43],
which is exactly the high temperature approximation of
the Bose-Einstein distribution [3] (p. 50). Therefore, the
heat capacity of a mode becomes Cm(ω) = kBg(ω). As
pointed out by Schelling et al. [13], the heat capacity
in equation (3) is intended to be only for those modes
that carry heat. As silicon has both optical and acoustic
phonons, of which only the acoustic phonons carry heat
significantly, the total heat capacity of the system to be
used in MD simulations is 3kBn/2. The means that the
heat capacity of a mode should be kB/2. This condition
was used to properly normalize Cm(ω).

The group velocity is, by definition:

vg =
∂ω

∂k
, (5)
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and is calculated from the simulated dispersion curves.
When present, non-differentiable points are excluded from
the velocity calculations.

The mean free path, Λ = vgτ , is affected by different
phonon scattering processes and their relaxation times,
τ . In bulk crystals, the important scattering mechanisms
are the anharmonic scattering and the impurity scatter-
ing [23]. However, as the MD system does not contain
any impurities, anharmonic scattering can be considered
to be responsible for the scattering in bulk silicon MD
simulations [44]. The anharmonic terms are different for
longitudinal and transverse modes [12], and they can be
expressed as:

τ−1
L (ω) = ALT χLωξLe−BL/T (6)

τ−1
T (ω) = AT T χT ωξT e−BT /T . (7)

Here the subscripts T and L refer to the transverse and
longitudinal modes.

In addition to anharmonic scattering, in NEMD simu-
lations two other scattering processes can be considered.
In simulations with periodic boundaries in all directions,
the effective mean free path related to scattering at the
heat source and heat sink is Ly/4, where Ly is twice the
distance between a hot and a cold spot, i.e. the system
length in this direction [13]. Factor 4 has been used in nu-
merous studies [15], and may result from scattering at the
boundaries between thermostated and unthermostated re-
gions [45]. As there is some uncertainty in the actual value,
a MFP of βL/4 was considered for this scattering. It is
also noted that as the length was not varied in these sim-
ulations, the parameter β only increases or decreases the
thermal resistance, and does not affect the scaling prop-
erties related to film thickness.

In addition to heat source scattering, the boundary
scattering process is expected to play a major role in thin
films. The boundary scattering can be assumed to have
a mean free path of αLx, where Lx is the system thick-
ness and α a factor determining the specular scattering
probability s: α = 1/(1 − s) [44]. In a system with free
boundaries, this scattering process must be included in
the calculation of the MFP. In principle, both scattering
process parameters α and β could depend on the phonon
frequency. However, in that case their estimation would
need quite different procedures, preferably direct observa-
tion of wavepacket scattering on interfaces [46].

Combining these scattering mechanisms and relax-
ation times with the Matthiessen rule, the effective MFP
and its dependence on frequency can be obtained:

1
Λeff (ω)

=
1

vg(ω)τL,T (ω)
+

4
βLy

+
1

αLx
. (8)

By combining equations (4) and (8), the dependence of
the resistivity on the film thickness and scattering pa-
rameters can be found. It is noted that in this context,
equation (4) includes anisotropy, since only one longitu-
dinal and two transverse phonon modes are included in
the calculations, and their velocities depend on the crys-
tal orientation of the modes. The parameters for longi-
tudinal phonon scattering were taken from the work of

Mingo [23] and are: AL = 1.73 × 10−19 s/K, BL = 137.3
K, χL = 1, and ξL = 2. Transverse phonon scattering
is generally not as heavily dependent on the frequency,
as the dependence is typically linear [12]. The parameters
for transverse phonon scattering were taken from the work
of Chantrenne et al. [47] and are: AT = 7 × 10−13 s/K,
BT = 0 K, χT = 1, and ξT = 4. Therefore, the unknowns
in the thermal resistivity are the specularity parameter
α, and the size parameter β. It has been found, that sur-
face scattering in many cases can be described as diffu-
sive [8,23]

For bulk systems, i.e. when both surface and sys-
tem size scattering rates are omitted, and the calculated
vibration spectra and dispersion relations for bulk sili-
con are used, the procedure gives the direction depen-
dent thermal conductivities 138 W/mK [100], 108 W/mK
[110], and 175 W/mK [111]. The anisotropy in these cases
comes from the different acoustic phonon group veloci-
ties in different directions. The average of these values is
140 W/mK, which is reasonably close to the experimental
value 150 W/mK. It should be noted that the scattering
parameters, as given above, are obtained by fitting MD
simulation data (silicon described by the Stillinger-Weber
potential) to experimental data. Therefore this agreement
suggests only that scattering and group velocity of rele-
vant phonons in the MEAM model are reasonably similar
to the SW model. Moreover, the calculations in this work
seem to have been performed correctly.

Similarly, one can calculate the predictions for the
thermal resistivity, 1/κ, of thin films for various scattering
probabilities, thicknesses, and crystal orientations by us-
ing the calculated dispersion curves and vibration spectra
for the specific case. Moreover, the boundary scattering
parameters can be optimized so that the predictions of
equation (4) will best reflect the simulated data of Fig-
ure 5.

4.2 Surface scattering

As discussed above, the kinetic theory expression has two
free parameters that can be tuned to fit the NEMD results
of thermal resistivity. This procedure yields information
about the directional dependence of the boundary scat-
tering process in silicon nanofilms. When the scattering
parameter has been optimized, the thermal resistivities
can be presented as a function of film thickness. This is
shown in Figure 6. The scattering parameters α used in
Figure 6 are 4.52 for (100) surfaces, 60.1 for (1̄10) surfaces,
and 2.15 for (1̄1̄2) surfaces. Therefore, the specular scat-
tering probabilities for the (100) and (1̄1̄2) surfaces are
significantly lower than for the (1̄10) surface. By calculat-
ing the specular scattering probability s = 1 − 1/α, the
results predict a specular scattering probability of 54% for
the (1̄1̄2) surface, 78% for the (100) surfaces and 98% for
the (1̄10) surfaces. The last scattering probability is ex-
tremely high, indicating almost specular scattering. In all
these cases the size parameter β was as high as 10, indi-
cating that on the average, the phonons undergo only one
diffuse scattering event when traveling 2.5 times through
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Fig. 6. Thermal resistivity of silicon thin films as calculated
with equation (4). The boundary scattering parameters are op-
timized to reflect the simulated data of Figure 5. Three differ-
ent free surfaces are present in the six simulation cases: (100)—
triangles, (1̄10)—crosses, and (112̄)—circles. The lines are best
fits to the data.

the system, not four scattering events for each pass. It is
noted that the scattering parameter β was the same for
all crystal directions, and therefore, the MD data is not
exactly reproduced with the optimal scattering parame-
ters for the kinetic theory calculations.

These results clearly prove that phonon boundary scat-
tering on free surfaces is highly anisotropic. In one of the
three surfaces studied, surface scattering was nearly specu-
lar. Therefore, the in-plane thermal conduction was found
to be best in systems with free (1̄10) surfaces. By compar-
ing the results shown in Figures 6 and 5, it can be seen
that the kinetic theory results for (100) and (1̄10) sur-
faces can be optimized quite well. However, for the (1̄1̄2)
surface, a significant difference is seen.

4.3 The role of dispersion

As discussed above, the vibrational frequencies of the
phonons decrease slightly in thin films. This shows e.g. in
the dispersion relation, and therefore changes the group
velocity. To analyze the effect these issues have on the re-
sistivity, one can easily exclude the boundary scattering
terms, by setting Ly → ∞ and α → ∞ in the relaxation
time, equation (8). These results are shown in Figure 7,
where a best fit to all cases studied is shown. As seen in
the figure, in the cases with free (100) and (1̄10) surfaces,
decreasing the size increases the resistivity. In the case of
(100) surfaces, phonon confinement effects are included in
the dispersion relation, and significant reduction of the
group velocity was seen. This increases the thermal resis-
tivity. In addition, in one case with a free (1̄10) surface,
phonon confinement was seen. In contrast, in the case of
a free (1̄1̄2) surface, only band folding was seen without
discrete phonon modes. In the last case, it seems that
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Fig. 7. Results of equation (4) without boundary scattering
terms. Group velocity and vibration spectrum are calculated
from MD simulations. The free surfaces are: (100) triangles,
(1̄10) crosses, and (1̄1̄ 2) circles.

decreasing the system size with the exclusion of the scat-
tering effects could decrease the resistivity. The reason for
this behavior is in the frequency dependent anharmonic
scattering term. When the system becomes thinner, the
characteristic vibration frequencies decrease, as seen e.g.
in the dispersion curves. For the lower frequencies, the
anharmonic scattering rates decrease, which decreases the
resistivity.

The vibrational spectra for two films is shown in
Figure 8. The frequency dependent relaxation times of
anharmonic scattering are also depicted. As seen in the
figure, the relaxation times increase significantly for fre-
quencies below around 5–10 THz. In this frequency range,
the vibrational spectra of thin and thick films are differ-
ent. The spectrum of thin films is more inclined to the low
frequencies, which have longer relaxation times. However,
the anharmonic scattering rates, as given by equations (6)
and (7), are questionable in nanofilms, where the surface
effects start to dominate and change the anharmonic in-
teraction between the atoms.

To emphasize, in addition to surface scattering and dis-
persion, there seems to be a third mechanism affecting the
conductivity of thin films: the changes in relaxation times
due to the decreasing phonon frequency. The change of
the relaxation time due to dispersion has been pointed
out, but mainly in terms of the group velocity [26,48], not
directly in terms of typical vibrational frequencies. How-
ever, it must be noted that in practice, surface scattering,
dispersion, and changes in the relaxation times are present
simultaneously. In these calculations, decreasing the size
always increased the resistivity, indicating that either con-
finement or surface scattering is the most important factor
affecting the thermal resistivity.

The inaccuracy of the potential model for bulk sil-
icon may cast some doubts on the reliability of the
results. However, the present potential is known to
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Fig. 8. Density of states in two silicon films. The film thick-
nesses of the figure are 2 and 0.5 nm. The thicker film is shown
with the black line, and the thin film with the grey line. The re-
laxation times, τL and τT as calculated respectively with equa-
tions (6) and (7) are shown with the dotted lines.

accurately describe the properties of surfaces, and was
therefore chosen instead of the commonly used short-range
potentials, Stillinger-Weber or Tersoff, even if these po-
tentials are known to describe the bulk dispersion with
better accuracy [49]. Moreover, as discussed, the thermal
energy is conducted mainly by the low frequency phonons,
where the potential was reasonably accurate. As evidence
of the accuracy, the kinetic theory with the calculated
group velocity and density of states gave a very good
result compared to the experimental value of conductiv-
ity. More complex potentials with larger parameter sets
can describe the mechanical (i.e. vibrational) properties
of many structures better. At present, probably the most
accurate classical potentials for silicon are the EDIP [50]
or the empirical multiparameter MEAM [51].

5 Conclusions

This paper addressed the dispersion related thermal re-
sistivity issues in thin films by means of molecular dy-
namics simulations. Dispersion relations were calculated
for both bulk and thin film silicon. The simulations were
performed at room temperature, where the characteristic
phonon wavelength is only a few lattice constants, and
thus the continuum approach for phonons is inapplicable.
The interatomic potential used for silicon (MEAM) has
previously been used to study silicon surfaces because of
its long range of interaction, and was chosen since the free
surfaces were expected to play a major role in this study.
However, the computations revealed that the MEAM po-
tential does not accurately describe the dispersion of high
frequency phonons. The main findings are still expected
to be predictive, since the surface properties are well re-
produced and phonons with low frequencies carry most
heat. The results showed that the dispersion curves re-
main unfolded even for very thin films. Changes in the

dispersion curve became observable only around 2.5 nm.
Close to 1.5 nm phonon confinement also became observ-
able, as some of the peaks in the vibration spectrum were
split, giving proof of discrete phonon modes.

The thermal conductivities of the films were calculated
with non-equilibrium MD, and the results were compared
to the kinetic theory predictions. The results were reason-
ably similar. However, the boundary scattering probability
was found to be highly anisotropic. Specifically, in cases
with free (1̄10) surfaces, boundary scattering was almost
specular. In this case, the thermal resistivity also increased
as the film became thinner. The reason for this effect was
in the reduced group velocity due to confinement effects.
In other cases, boundary scattering was the dominant pro-
cess for increasing thermal resistivity. In two simulation
cases no phonon confinement was seen. In those cases,
band folding decreased the characteristic vibrational fre-
quency. Even if band folding could decrease the group ve-
locity, it could simultaneously increase the relaxation time
of anharmonic scattering. In these simulations, both these
competing mechanisms were, however, negligible as com-
pared to surface scattering or confinement.

This work was funded by the Academy of Finland.
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